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Abstract: A computer program which generates empirical rules
associating 130 HMR  shifts with local structural environments is
described. The program uses a heuristic method to search for common
structural features for those carbon atoms exhibiting similar shifts.
Rules have been generated by our program from a combined set of acyclic

amine and paraffin data. Exanmples of these rules are presented, and

their performance as a tool for structure elucidation is examined.



Introduction

Recent computer studiesl’2’3’4 have explored the " automated
application of 13C NMR techniques to structure elucidation problems.

The increasing popularity of 13C techniques and the increasihg bulk of
available data have motivated us to develop a computer program which
generates empirical 13C NMR rules.

A natural abundance 13C NMR ;pectrum which is £fully proton-
decoupled consists of a number of sharp péaks corresponding to the
resonance frequencies in the applied magnetic field of the véridus
types of carbon atoms present in the sample. A 13C shift is the amount
a peak position deviates from a reference peak of a standard compound
usually tetramethylsilane (TMS). Methods for obtaining empirical rules
which correlate 13C shifts with local structural environments within a

class of compounds are cited in the 1iterature.5’6’7’8

In the
traditional parameter set approach to rule formation the chemist Sorts
through’ a large amount of . data by hand, searching for structural

13C shifts. The total 130

features which appear to correlate with
shif&-is then given as a function of these structural features. The
functional form chosen is wusually one which presumes a linearly
independent relationship between the structural features. A curvé
fitting procedure is used to obtain optimal settings for parameters in

the equat;on. The selection of pertinent structural features and the

selection of a functional form are both difficult decisions for which

it may be easy to overlook the correct choice.



We have written a computer program9 which generates empirical
rules associating a 13C NMR shift with the local‘structural environment
of a carbon atom. The chemist must provide the program with a training
set of known structures and their assigned 13C spectra. In addition he
must select a language of discrete valued atom features (i.e., "atom
type", "number of neighbors", etc.) in which the program is to express
substructures. The program then buil&s chemical substructures which
characterize the environment of carbon atoms exhibiting similar 13C
shifts. |

>A set of rules in the following format is generated:

EEEE&SE (range of characteristic 130 shift)

(substructure description)
If the substructure to the 1left of the arrow is present within some
molecule then for a specified atom within the substructure a 13C shift
in the range given to the right of the arrow will be observed. For
example, the following rule was generated by the program when presented
with a training set of combined paraffin and acyclié amines.
CH3*-CHZ-CH2-CH2-X + 14,0 ppu < 60 < 14.7 ppm
The asterisk iﬁ the substructure description denotes the atom for which
the shift is predicted. The X stands for any non~hydrogen atom. For
the above rule GC is given in ppm downfield from TMS.
A second program is capable of applying the rules to molecules to
predict and assign their 13C NHMR spectrum. Also, given an unknown'13C

NMR spectrum and a list of candidate molecules, it can predict a

spectrum for each candidate and rank the candidates by the similarity



of their predicted spectra to the unknown spectrum. Although it is
possible to apply the rules to any molecule, the value of the
prediction depends upon the similarity of the molecule to the training
set which was used to generate the rules.

A reliable automated method of generating and applying 130 NMR

rules under constraints supplied by the chemist can be a valuable tool
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in increasing the efficiency of analyzing C NMR data and deducing
structural information from the 13C NMR spectra of unknowns.
Me thod
A. Rule Generation. The algorithm employed to generate the 13C
10,11

NMR rules closely parallels the algorithm in the Meta-DENDRAL
program which generates empirical rules of molecular fragmentation from
mass spectral data. Both programs represent molecules in a chemical
graph notation where the atoms are represénted as nodes and bonds are
represented as arcs between mnodes. - A heuristic method12 is used to
search through a space of possible substructures. For 13C NMR rule
formation this search 1is directed toward finding substructure
descriptions of the characteristic 1local environment about carbons
exhibiting similar 130 shifts.

The chemist is given some control over the character of the
generated rules. He must select the language of atom features used to
generate substructures for the rules. In this work a topological

representation of structures was employed which included "atom type"

(C,N,etc.) and "number of non-hydrogen neighbors" as atom features



(hydrogens are not represented as distinct atoms in this
representation). Although stereochemical terms Qere not required to
analyse the amines and paraffins, the addition of stereochemical terms
as atom features will be a topic of future work. The chemist must also
assign values to two parameters which control the
specificity/generality of the generated rules. The parameter MINIMUM-
EXAMPLES specifies the minimum number of.&ata points which a rule must
explain within the training set. A second parameter, MAXIMUM-RANGE,
specifies the maximum allowed width of a rule’s predicted shift raﬁge.
A chemist who wants to find only the most common general trends in a
set of data may set these two parameters to obtain a small number of
fairly general rules with moderate sized prediction ranges. When
interested in a more exacting analysis, he may set the parameters to
obtain a larger number of rules containing relatively specific
substructures and correspondingly smaller prediction ranges.

Rule generation may be viewed as a search which starts with the
very general .seed rule (C - —w<60<w (where C may be any carbon atom
with any atom properties and 60 is the observed shift), and proceeds
to expand upon this rule by adding new atoms and atom features to the
rule substructure in an -attempt to narrow the predicted range of
shifts. Since new atoms and atom features may be added to a
substructure in many ways, each rule considered may be expanded into
many offspring. The first few steps of the rule search in generating-

the results discussed below are shown in Figure 1.



At each step in the search a sihgle~atomic feature from the user
selected list is added to all the atoms a given number of bonds away
from the central carbon. In Figure 1 we see that the seed rule is
expanded by considering all possible values for "number of neighbors"
of the central carbon. In this example only "atom type" and "number of
neighbors" are allowed as atom features (note that the feature "atom
type" was already specified as carbén in the seed rule). Each
resulting level 1 subétructure is in turn expanded in level 2Aby adding
" either an "atom type'" or "number of neighbors" specification to éach
atom one bond ~away from the central carboﬁ. The search is then
continued along each of these new paths. At each step each newly
generated substructure is associated with a range of 13C shifts. Thié
range is determined by searching for occurances of the substructure
within the training set molecules. When the substructure is found
within a molecule in the training set, the observed shift for the
associated carbon is fecorded. The shift range associated with the
substructure is simply the range of all such obsérved‘shifts.

Each step taken in the rule search is evaluated in terms .of the
shift range bf the resulting substructure. If the shift range is found
to be narrower than the ‘range. of the parent rule, then the added
specification is considered to be useful, and the search is.cbntinued
from the new version. If an added specification does not narrow the
shift range, that path of the search is aborted. More specifically for

each newly generated potential rule, the following action is taken:



IF the shift range cf the new version is not narrower than the shift
range of its parent,
THEN abort this branch of the search;
ELSE IF the number of applications of the new version in the training
data is less than some predefined value, MINIMUM-EXAMPLES,
THEN add its parent to the list of rules and do not consider the
new versién (the user may set a control flag which prevents
the parent from becoming a rule irn this case);
ELSE IF the shift range §f the new version is smaller than some
predefined value, MAXIMUM-RANGE,
TBEN add the new version to the list of rules;
>ELSE consider the versions generated by adding a new level of feature

specifications.

The progran runs until all branches of the search have been
explored. At that point a sef of rules will have been generated which
covers all the data points in the training set. Since rules with
slightly different substructures may have been generated which cover
the same data in the training set, the rule set may be redundant. The
set of rules is therefore passéd to a routine which selects a less
redundant subset of the rules. The algorithm for selecting a subset of
rules is summarized below:

1. Assign to each rule the scére peaks/wrange2 where peaks
is the number of data peaks covered by the rule in the training

data, and wrange 1is the width of the shift range for the rule.



2. Select the rule with the highest score.

3. Delete the data points covered by the newly selected rule, and
reevaluate the scores of all remaining rules.
If a rule covers no data points, remove it.

4, 1f there are more rules left, go to (1l).

The intent of the algorithm is to select during' each iteration
the strongest rule, then to weaken ru1e§ with evidence which overlaps
with it. The effect of this procedure is to select a subset of the
strongest rules covering the same set of data as the entire set of
rules.

B. Use of rules for structure selection. In order to test the
utility of the rules as a tool for structure ‘elucidation a second
program was written whiéh uses the rules to select from a 1list of
candidate structures the one whose predicted spectrum most closely
matches the  given wunknown spectrum. The structure selection test
involves two steps: 1)predict the spectra ' of .a. set of candidate
molecules using the rules, and 2)compare the predicted spectra with the
unkﬁown spectrum.

1. Predictiﬁg a spectrum. Rules are applied to a molecule
simply by searching for places where the rule substructure fits into
the molecule. A graph matching routine is wused to find a mapping of
atoms in the rule substructure: to atoms in the molecule. When a match
is found the shift range associéted with the rule is predicted for the

associated carbon atom. An example of predicting a spectrum is shown



in Figure 2. For each carbon in 4,4-Dimethylheptane the rules whiéh
apply to it are shown. For each rule shown its SUbstructure and atom
features map into 4,4-Dimethylheptane.

Of ten several rules apply to predict ranges for the same carbon
atom. If the predicted ranges are consistent with each other (i.e.,
‘one of the predicted ranges is contained in the others), then the
narrowest predicted range 1is used. This is illustrated by the rules
which explain C2 and C5 in Figure 2. Since one of the three predicted
- shift ranges . is contained within the others, it is selected; The
rationale for this decision is that the actual shift -should £all into
all of the predicted shift ranges; therefore assume the most stringent
prediction. If the predicted ranges overlap incompletely' or are
disjoint (this can occur for structures outside the training set), then
the ranges which are inconsistent with the narrowest range are merged
to arrive at a final predicted range for the carbon atom.

2. Comparing Predicted and Observed Spectra. Spectrum
assignment is accomplished by assigning each atom’s predicted range to
the closest obsérved shift in the unknown spectrum. In order to be a

‘valid assignment, the condition

shifts assigned observed shifts

no. of carbons _
in structure

no. of observed) S ( no. of multiply

must be satisfied. If the assignment satisfies this constraint it is
kept. Otherwise, the required number of multiply assigned observed

shifts are reassigned. The reassigned atoms and shifts are selected by



approximating the negative contribution to the comparision score of
reassigning each multiply assigned atom. . The reassignments
corresponding to the greatest comparison score are selected.

Once the most feasible assignment is found, the predicted shift
of each carbon is compared with the assigned shift in the unknown and a
comparison score for the molecule is obtained. The comparison score
reflects the degree of closeness of a structure’s predicted spectrum to

the unknown spectrum. This score is:

Comparison score = 2 1 '(l _ loshift - pshift]
hrange hrange
predicted
ranges
where

hrange = half the width of the predicted range

pshift = the midpoint of the predicted range; the predicted
shift
oshift = the shift of the assigned peak in the unknown spectrum;

the observed shift.

Since this function is inversely proportional to the width of the

_predicted range, narrow predicted ranges carry more weight than wide
predicted ranges. The comparison score is positive if the observed
shift is within the predicted range, and negative otherwise.

The structure selection program contains a user set parameter
EXPECTED-ERROR to account for the instrument resolution, inaccuracies
in the rdles, and other sources of error in the predicted or unknown
spectra. Each predicted range in each predicted spectrum is enlarged by
‘the value of the parameter setting. In Figure Z the predicted ranges

have had 2 ppm added to both their upper and lower bounds.
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Results

In order to test the viability of our approach to automated 13C
NMR rule formation, we selected paraffins and acyclic amines for test
compounds since they are known to exhibit a strong correlation betweeq
13C shift and local structure. 3,6,7,8

A. Rules. Rules were generated from a combined set of 22
paraffins and 47 acyclic amines selected as a representative subset of

s 7

those cited in the literature. Structures with empirical formula

C9H20 or C6H15N were excluded from the training set since these were to
be used later as unknowns for a structure elucidation test.

The shifts for the paraffins were incremented by 0.6 ppm in order
to account for the consistent difference between the two sets of data.
This compensates for the different solvents used for the amines
(benzene) and paraffins (dioxane). The program was given the atom
features "atom type" (i.e., C,N,etc.) and "number of neighbors" with
which to construct substructures. The parameter settings were MINIMUM-
EXAMPLES = 2 and MAXIMUM~SHIFT-RANGE = 2.0 ppm. The program generated
a set of 138 rules which covered all of the 435 data peaks. Examples
of the rules obtained are given in Figure 3.13 0f the rules generated
41 had a predicted shift range greater than 2.0 ppm since they covered
substructures which did not occur often enough in the 'data to allow
generating a rule with 2 instances and a narrow sh;ft range. | As might
be expected, the rules with wiae sﬁift ranges had general substructures

which applied in many places such as Rule 4 in Figure 3 while the rules
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with narrower shift ranges carried more detailed substructures applying
in fewer places such as Rule 3 in Figure 3. Often multiple rules were
found to cover the same data point. For example Rule 4 in Figure 3
applies wherever Rule 3 applies.

Since the program is designed to build substructures by including
only atoms and atom features which improve a rule’s performance in the
training data, some rule substructures may émit specifications of atoms
and features which could be added without affecting the evidence of a
rule. Rule 1 in Figure 3 says that whatever the type of the atom next
to the methyl group, the shift will be (14.32 to 14.70). Actually, this
rule was formed from situations in which atom 2 was always carbon.
However, since within the training . data the addition of the atom type’
could not change the rule’s evidence, the type of atom 2 remained
unspecified. The progfam did consider including the atom type, but
since it did not change the rule’s evidence the type specification was
not included. If the training set had included situations in which the
specification of the atom type would have improved.the prediction, the
specification would have been added.

The example given'above illustrates a design deéisionA which was
built into the program. For a given rule there may be several‘possible
substructure descriptions which perform equally well within the
training set‘data. The program selects one of these substructures as
the left hand side of the rulé. A tradeoff exists between selecting a

specific substructure with many atoms and features or a more general
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substructure with a relatively general déscription of‘ the lbcal
environment. The more specific substructure is less likely to apply in
subsequent molecules. A less specific subsétucture is more 1likely to
apply, but also may apply in cases where it should not_(as is the case
for Rule 1 of TFigure 3). Wé‘ are working on an extension to the
algorithm which will allow the program to reason more thoroughly with
this issue, and to refine its decision Qhen presented with addifional
data.

Cther properties of the rules are illustrated by the examplgé in
Figure 3. In Rule 1 the neighbor property for atom 4 means that atom 4
is connected to three atoms one of them being atom 3 and two other
atoms which were not given in the substructure. Rule 2 gives the shift
of a quartenary carbon. Each carbon adjacent to the quaternary carbon
may be connected to additional atoms outside the substructure. Rules 3
and 4 illustrate the dependence of the 13C shift range upon the number
of nearest (alpha), next nearest (beta), and further levels of
neighboring carbon atoms. This is similar to the result that Lindeman
and Adams obtained.6 Rule 4 says that atom 3 has three alpha carbons
and any number of beta carbons and gives a broad prediction range.
Rule 3 refines this prediction range giving a rule for the case of
three alpha carbons and two beta carbons. Rules 5 and 6 are both for a
tertiary amine and illustrate the influence of an additional beta

carbon on the tertiary carbon.

The rules correctly covered all the data in the training set with
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an average prediction range of 2.7 ppm. Notice that the average
prediction range could have been made smaller (with more resulting
rules) or 1larger (with feﬁer rules) by adjusting the parameters
MAXIMUM~RANGE and MINIMUM-EXAMPLES.

B. Structure selection of acyclic amines and paraffins. The
‘structure selection program was supplied an exhaustive list of C9H20
structural isomers (35 distinct structﬁresl4) which had been omitted
from the training set data used in the rule formation step. The
program used the set of rules to predict a spectrum for each strucfural

isomer. An unknown spectrum belonging to one of the structures

Cot20
was supplied and the program was asked to rank the candidate structures
by comparing each predicted spectrum with the unknown spectrum. The
number of carbons that correspond to an observed peak was not included
with the unknown spectrum. The test was repeated with éach of the 24
09H20 spectra from Lindeman and Adams6. The results of this test and
another test invol&ing C6H15N amines, are given in Table 1. Notice that
the program ranked the correct structure either first or second for 23
of the 24 C9H20 spectra and for 10 of the 11 C6H15N spectra. The value
of the parameter EXPECTED-ERROR in the spectrum comparison which allows
the user to widen the predictive range of the rules was varied. The
program performed best on this data and with this set of rules with
EXPECTED-ERROR equal to 2 ppm. It is difficult to sort out the reasons

for this setting being optimal. Two relevant factors are the peak

comparison function (the value decays to zero when the observed shift
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is at the edge of the predicted range) and the fact that the rules were
trained on different molecules than used here.

We examined in detail the progfam’s analysis of the 2,2,3,3 -
Tetramethylpentane spectrum. In this case the program ranked the
correct structure ninth out of the 35 candidates. We found a
combination of effects which compounded to give the low ranking to the
correct structure. These effects were aiso apparent to a lesser degree
in the analysis of other spectra, and point.to possible improvements to
our approach. |

éome predicted shift ranges for the correct structure were quite
wide. For 2,2,3,3 - Tetramethylpentane, seQen of the nine predicted
ranges were wider than & ppm due to two factors. First, wide predicted
shifts may arise for carbons with specific local environments which
were not found in the training data. In this case only a very general
rule (if any) might be available to predict a range for the ca;bon.
Second, a wide predicted shift may also arise when two rules with
disjoint predicted ranges apply to the same carbon. In this casé, at
least one of the rules must Have been incorrect. Either its prediction
range should have been wider or the substructure made more specific.
This problen is related to the tradeoff discussed earlier between using
general or specific versions of the structure.

Since the predicted ranges are assigned to the rules only on ghe
basis of those examples observed in the training set it is possible for

shift ranges to be too narrow. In this case, the inadvertently narrow
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predicted range may incorrectly penalize the - correct candidate
structure.

Peak intensity information which gives the number of carbon atoms
corresponding to an observed peak was not used. This information could
be wused by the program as a constraint on assignment of predicted
ranges to peaks in the unknown spectrum. The expected effect would be
lower comparison scores for incorrecl structures without significant
change to the comparison score of the correct structure.

Conclusion

‘The rules generated by the program are of the form substructure
implies shift range. This form differs in several respectsv from the
traditional parameter set approach of weighting and summing predefined
structural features. .(1) Each rule has a distinct predicted shift
range. Thus the ruleset can include rules of varying detail. The usual
expected error for the parameter set approach is a single number - the
standard deviation of the training set from thg fitted curve. The
prediction of a.shift range rather than a single number is an advantage
when analyzing -carbon atoms that exhibit mnagnetic nonequivalence.
Magnetic nonequivalence results in different chemical shifts for two
identical groups in molecules having an asymmétric carbon atom. The
parameter set approéch which attempts to predict the arithmetic mean of
the observed shifts will always be in error. (2) The rule format used
within the program is ideally.suited for "reading backwards'", that is,

the appearance of a peak in an unknown spectrum implies a structural
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feature. We hope to make use of this ability in a future program which
will use the rules to infer likely structures ffom an unknown spectrum.
(3) Whereas the parameter set approach attempts to break down the total
shift in terms of contributions from the selected structural featurés,
our rules predict only the total 13C shift characteristic of the
substructure. This is a major difference, and there 1is both an
advantage and a disadvantage in our apéroach. The disadvantage is that
by overlooking contributions to total shift our program is forged to

13C shift. Although a

generate a new rule to cover every distinct
large set of rules is difficult for people to grasp quickly, computer
programs may quite easily apply the rules. Predicting a 13C spectrum
required approximately one minute of CPU time for the aQerage molecule
in this study. The advantage of predicting total shifts over
hypothesizing partial contributions is in avoiding initial biases as to
what contributes to the shift and how these contributions are to be
combined. In the parameter set approach preselected structural
features are qombined in a predefined functional form. Our approach
bypasses the bias of an assumed functional form, and introduces only a
weak bias concerning which structural features may be considered. The
program may counsider any structural feature which can be expressed
within the language of atom features selected by the chemist.

The performance of the rules in discriminating .among similar

structures mnot included in the training set data demonstrates the

general content of the rules. Although the procedure of predicting
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spectra for all possible structural isomers, then comparing against the
unknown spectrum is an inefficient approach to structure elucidation
(the number of possible structural isomers increases rapidly with the
size of the molecule), it is nevertheless a valid test of the
information content of the rule set.
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Figure Captions

Figure l.b Partial schematic diagram of the rule search, Rule sub-
structures are expanded by adding new substructure specifications.
The observed shift range in the training data directs the
search. GC values are approXimate and are given in épm
downfield from TMS. The “*#° identifies the central carbon to
which the shift is assigned. ‘X’ indicates that any non-hydrogen

"atom type" is allowed.

Figure 2. Application of rules to 4,4-Dimethylheptane for spectrum
predictien. SC(n).is the shift observed for the atom n in ppm

downfieid from TMS.

Figure 3. Sample rules generated by the program. GC' is given in

ppm downfield from TMS.
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Table 1. Results of Structure Rénking Experiment

Identity of unknown spectrum Ranking of correct structure
' out of 35 possible
CQHZO isomers

- Nonane

- Methyloctane
Methyloctane
Methyloctane

~ Dimethylheptane

- Dimethylheptane
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Dimethylheptane
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Dimethylheptane
Dimethylheptane
Dimethylheptane

= Trimethylhexane
- Trimethylhexane
- Trimethylhexane
- Trimethylhexane

4 - Tetramethylpentane
4 - Tetramethylpentane
3 - Tetramethylpentane
hylheptane
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imethyl - 3 -~ ethylpentane
iethylpentane
- Tetramethylpentane
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Ranking of correct structure
out of 39 possible
C NH, . isomers
Hexylamine _ 615
1,3 - Dimethylbutylamine
1,2,2 - Trimethylpropylamine
2,2 - Dimethylbutylamine
Dipropylamine
~Diisopropylamine
N - Ethylbutylamine
N - Ethyl - sec - butylamine
Triethylamine
N,N - Dimethyl - sec - butylamine
N,N - Dimethyl - tert - butylamine
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